Matura: CKE Arkusz maturalny: matematyka podstawowa Rok: 2016. Arkusz PDF i odpowiedzi: Matura podstawowa matematyka 2013 Matura podstawowa matematyka 2012
A. 22013 B. 22012 C. 21007 D. 12014 Zadanie 3. (1 pkt) Liczba c log 23. Wtedy A. c3 2 B. 32c C. 32 c D. c2 3 Zadanie 4. (1 pkt) Liczba 2 53 215 jest równa A. 2215 B. 8 C. 2415 D. 2 Zadanie 5. (1 pkt) Julia połowę swoich oszczędności przeznaczyła na prezent dla Maćka. 10% tego, co jej zostało, przeznaczyła na prezent dla Dominiki.
Matura matematyka 2010 sierpien poprawkowa - poziom rozszerzony Author: arkuszematuralne.pl Subject: Matura matematyka 2010 sierpien poprawkowa - poziom rozszerzony Keywords: arkusz Created Date: 7/23/2010 11:11:27 AM
Vay Nhanh Fast Money. Dwa miasta łączy linia kolejowa o długości 336 kilometrów. Pierwszy pociąg przebył tę trasę w czasie o 40 minut krótszym niż drugi pociąg. Średnia prędkość pierwszego pociągu na tej trasie była o 9 km/h większa od średniej prędkości drugiego pociągu. Oblicz średnią prędkość każdego z tych pociągów na tej dostęp do Akademii! Pole podstawy ostrosłupa prawidłowego czworokątnego jest równe 100 cm2, a jego pole powierzchni bocznej jest równe 260 cm2. Oblicz objętość tego dostęp do Akademii! Punkt S jest środkiem okręgu opisanego na trójkącie ostrokątnym ABC. Kąt ACS jest trzy razy większy od kąta BAS, a kąt CBS jest dwa razy większy od kąta BAS. Oblicz kąty trójkąta dostęp do Akademii! Wykaż, że liczba 6100−2⋅699+10⋅698 jest podzielna przez dostęp do Akademii! Rozwiąż nierówność 2×2−7x+5≥ dostęp do Akademii! Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x∈[−7,8].Odczytaj z wykresu i zapisz: a) największą wartość funkcji f, b) zbiór rozwiązań nierówności f(x)0 i b0 i b>0Chcę dostęp do Akademii! Prosta o równaniu y=2/mx+1 jest prostopadła do prostej o równaniu y=−32x−1. Stąd wynika, że dostęp do Akademii! Dla każdej liczby rzeczywistej x, wyrażenie 4×2−12x+9 jest równe A.(4x+3)(x+3) B.(2x−3)(2x+3) C.(2x−3)(2x−3) D.(x−3)(4x−3)Chcę dostęp do Akademii! Wierzchołkiem paraboli o równaniu y=−3(x−2)2+4 jest punkt o współrzędnych A.(−2,−4) B.(−2,4) C.(2,−4) D.(2,4)Chcę dostęp do Akademii! Punkt A=(0,1) leży na wykresie funkcji liniowej f(x)=(m−2)x+m−3. Stąd wynika, że dostęp do Akademii! Rozwiązaniem układu równań {5x+3y=38x−6y=48 jest para liczb i y=4 i y=6 i y=−4 i y=4Chcę dostęp do Akademii! Liczba log100−log28 jest równa A.−2 B.−1 dostęp do Akademii! Liczby a i b są dodatnie oraz 12% liczby a jest równe 15% liczby b. Stąd wynika, że a jest równe liczbyb liczbyb liczbyb liczbybChcę dostęp do Akademii! Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność |x+4|<5Chcę dostęp do Akademii!
matura matematyka sierpień 2013 arkusz